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1. Introduction

Even after the revolutions in string theory, we still lack enough control over the string

coupling dependence of various amplitudes. Notable exceptions are the c ≤ 1 non-critical

strings and the topological strings. For the latter case, all genus results are available for

some models. Moreover, there is a deep underlying structure in the genus expansion which

enables us to determine the amplitudes recursively [13]. It is extremely interesting to find

a similar relation in the non-topological setup, but in general it is a formidable task.

However, there exists an all order result in our familiar AdS/CFT context: the expec-

tation value of 1/2 BPS circular Wilson loop in U(N) N = 4 SYM [1]. In the string theory

side, Wilson loop is described by a string worldsheet ending on the loop at the bound-

ary of AdS, and its expectation value is given by the worldsheet action for the minimal

surface [11, 10, 9]. On the Yang-Mills side, 1/2 BPS circular Wilson loop has the form

W =

〈
1

N
TrP exp

(∮
dt(iAµẋ

µ + θiΦi|ẋ|)
)〉

(1.1)
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where θi is a constant unit vector in R6 and xµ(t) is a circular loop in R4. In a beautiful

paper [2], it is realized that summing over the rainbow diagrams boil down to the following

N ×N Hermitian matrix model

W =
1

Z

∫
dM exp

(
− 2

g2
YM

TrM2

)
1

N
Tr eM . (1.2)

In [1] it is further argued that this matrix model actually gives all order result of 1.1

in perturbation theory, up to possible instanton corrections [6].

In this paper, we will study the ’t Hooft expansion [5] of circular Wilson loop

W (λ, gs) =

∞∑

h,`=0

Wh,`λ
hg2`
s (1.3)

in terms of the string coupling gs ∼ g2
YM and the ’t Hooft coupling λ = g2

YMN . As reviewed

nicely in [14], a Feynman diagram of Yang-Mills theory is reorganized as a Riemann surface

of h holes and ` handles. Note that the gs-expansion of Wilson loop starts with the order g0
s ,

since the trace in 1.1 is normalized by 1/N . At least perturbatively, the double summation

in 1.3 can be performed by either summing over h first or summing over ` first. The

first choice leads to the usual genus expansion of W . In section 2, we will consider how

to find the `-loop term systematically. The second choice leads to the expansion of W

in terms of the number of holes. In section 3, we will find a recursion relation between

the h-hole amplitude and the (h + 1)-hole amplitude. In both cases, we find a curious

property of circular Wilson loop: we can turn on the coupling from zero-coupling by a

certain operation:

W (0, gs) −→ W (λ, gs) ,

W (λ, 0) −→ W (λ, gs). (1.4)

In section 4, we will study the relation between W at gs = 0 and gs 6= 0, and argue

that they are related by an integral transformation. Section 5 is the discussions on our

findings, and some technical details are collected in the appendices.

2. Genus Expansion of Circular Wilson Loop

In this section, we will consider the string loop expansion of circular Wilson loop

W (λ, gs) =
∞∑

`=0

W`(λ)g2`
s . (2.1)

This problem has been already studied in [1]. However, we find it useful to revisit this

problem since there is a systematics behind this which is not mentioned in [1].

– 2 –
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2.1 Relation between parameters in YM and String Theory

Before starting the analysis, let us first review the relation between the parameters in

N = 4 SYM and string theory on AdS5 × S5 [15, 16]. The ’t Hooft coupling λ in N = 4

SYM corresponds to the curvature radius in the string theory side

(RAdS5)2 = (RS5)2 = α′
√
λ . (2.2)

In other words, 1/
√
λ governs the worldsheet sigma-model corrections. The Yang-Mills

coupling g2
YM is related to the string coupling gs via the identification of complex coupling

in N = 4 SYM and the axion-dilaton of Type IIB string

τYM =
θ

2π
+ i

4π

g2
YM

⇔ τIIB = χ+ ie−φ . (2.3)

In this paper, we define the string coupling gs as

gs =
g2

YM

4
. (2.4)

This differs from the usual normalization by a factor of π. This factor can be absorbed by

a constant shift of the dilaton zero-mode φ0. Our normalization is motivated by the fact

that under the relation 2.4 the Gaussian measure of matrix model 1.2 becomes
∫
dM exp

(
− 2

g2
YM

TrM2

)
=

∫
dM exp

(
− 1

2gs
TrM2

)
, (2.5)

which implies that gs with this normalization is the canonical loop counting parameter of

the matrix model 2.5. In our normalization, ’t Hooft coupling λ = g2
YMN is written as

λ = 4gsN . (2.6)

2.2 Expansion in Terms of Buchholz Polynomials

In [1], the matrix integral 1.2 was evaluated exactly at finite N and the result is given by

a Laguerre polynomial

W =
1

N
e
gs
2 L1

N−1(−gs) . (2.7)

This is also written as a confluent hypergeometric function

W = e
gs
2 1F1(1−N, 2 ;−gs) = e−

gs
2 1F1(1 +N, 2 ; gs) . (2.8)

We would like to recast this into a form of 1.3 in the large N limit with fixed λ = 4gsN .

The large a behavior of confluent hypergeometric function 1F1(a, b ; z) with general b has

been studied by mathematicians [3, 4], so we can borrow their result and apply it to our case

b = 2 2.8. The starting point of the analysis is the following contour integral representation

of 2.7

W (λ, gs) = 2

∮

z=0

dz

2πi
exp

[
λ

2
z +

gs
2

coth(gsz)

]
. (2.9)
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The equivalence of 2.7 and 2.9 is shown in appendix A. Then we add and subtract the

single pole of coth(gsz) at z = 0

W (λ, gs) = 2

∮

z=0

dz

2πi
exp

[
1

2

(
λz +

1

z

)
+ gsH(gsz)

]
, (2.10)

where H(x) is defined by

H(x) =
1

2

(
coth x− 1

x

)
. (2.11)

Since H(x) is regular at x = 0, the second factor in 2.10 has the Taylor expansion around

z = 0

gsH(gsz) =
g2
s

6
z − g4

s

90
z3 +

g6
s

945
z5 − g8

s

9450
z7 +

g10
s

93555
z9 + · · · . (2.12)

To evaluate the contour integral, we expand the integrand around z = 0. Using the

generating function of modified Bessel functions

exp

[
t

2

(
x+

1

x

)]
=

∞∑

n=−∞

In(t)

xn
, (2.13)

the first part in 2.10 has the following Laurent expansion

exp

[
1

2

(
λz +

1

z

)]
=

∞∑

k=−∞

Îk(λ)

zk
, (2.14)

where we introduced a function Îk(λ) as

Îk(λ) =
Ik(
√
λ)

(
√
λ)k

. (2.15)

The second factor of 2.10 is regular around z = 0 and admits a Taylor expansion. The

coefficient of xn in the Taylor expansion of eaH(x) is known as the Buchholz polynomial

pn(a) [3, 4]
∞∑

n=0

xnpn(a)
def
= exp

[
aH(x)

]
. (2.16)

Therefore, the second factor of 2.10 is expanded as

exp
[
gsH(gsz)

]
=

∞∑

n=0

(gsz)
npn(gs) . (2.17)

Finally, combining 2.14 and 2.17, the circular Wilson loop 2.10 is written as

W (λ, gs) = 2

∞∑

n=0

În+1(λ) gns pn(gs) . (2.18)

From the definition 2.16, one can easily see that pn(gs) is an nth order polynomial in gs
with fixed parity pn(−gs) = (−1)npn(gs). See appendix B for more information on pn(gs).

To our knowledge, the closed form of pn(gs) is not known in the literature. However,

– 4 –
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starting from p0(gs) = 1, we can generate pn(gs) successively using the following recursion

relation

pn(gs) = gs

∫ 1

0
dt t

n
2

[
1

4
pn−1(gst)− p′′n−1(gst)

]
(2.19)

where p′′n−1 denotes the second derivative of pn−1. For instance, the first few terms are

given by

p1(gs) =
gs
6
, p2(gs) =

g2
s

72
, p3(gs) =

g3
s

1296
− gs

90
, p4(gs) =

g4
s

31104
− g2

s

540
. (2.20)

Although 2.18 is a nice compact expression, we have to rewrite it in the form of string

loop expansion 2.1. This is basically a problem of the change of basis from the polynomials

{gns pn(gs)}∞n=0 to the monomials {g2`
s }∞`=0. We can easily find a first few terms of `-loop

correction W`(λ) of Wilson loop using 2.20

W0(λ) = 2Î1(λ)

W1(λ) =
Î2(λ)

3

W2(λ) = − Î4(λ)

45
+
Î3(λ)

36

W3(λ) =
2Î6(λ)

945
− Î5(λ)

270
+
Î4(λ)

648
. (2.21)

In general, W`(λ) is a linear combination of Îk(λ)

W`(λ) = 2
`−1∑

m=0

cmÎ`+m+1(λ) , (2.22)

where cm is the coefficient of g`−ms in p`+m(gs). Namely, W`(λ) is determined by certain

coefficients in p`(gs), p`+1(gs), · · · , p2`−1(gs). This implies that the string loop correction at

fixed order ` is calculable by a finite number of steps using 2.19.

2.3 Large λ Limit

From the expression 2.18, it is easy to find a leading gs-correction to the large λ behavior

of Wilson loop. Recalling that the leading asymptotics of modified Bessel function Ik(z) is

independent of k

Ik(z) ∼
1√
2πz

ez (|z| → ∞) , (2.23)

2.18 becomes

W (λ, gs) ∼
√

2

π
λ−

3
4 e
√
λ
∞∑

n=0

gns

(
√
λ)n

pn(gs)

=

√
2

π
λ−

3
4 e
√
λ exp

[
gsH

(
gs√
λ

)]
. (2.24)
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In the large λ limit, the last factor is approximated by the first term in the expansion of

gsH(gsz) in 2.12. Therefore, we find

W (λ, gs) ∼
√

2

π
λ−

3
4 exp

(√
λ+

g2
s

6
√
λ

)
. (2.25)

This agrees with the result of [1]1. Note that the expression 2.25 is valid in the regime

{λÀ 1} ∩ {λÀ g2
s} . (2.26)

In [1], it is argued that the gs-correction found in 2.25 is understood from the consideration

of worldsheet moduli integral in string theory on AdS5 × S5.

As argued in [19], when gs becomes of order
√
λ the large λ behavior of W (λ, gs) gets

all order correction in g2
s/λ beyond the first order correction given in 2.25. In the bulk

string theory side, this is computed by the DBI action of D3-brane [19]

W (λ, gs) ∼ exp

[
λ

2gs
sinh−1

(
gs√
λ

)
+

1

2

√
λ+ g2

s

]
. (2.27)

In the Yang-Mills/matrix model side, this is easily obtained by the saddle point approxima-

tion of the contour integral 2.9. To reproduce this expression from the series expansion 2.18,

we have to keep sub-leading terms in the large λ asymptotics of modified Bessel function.

3. Expansion in Terms of Number of Holes

The ’t Hooft expansion 1.3 is a double expansion in h and `, thus we can try to sum over

` first and write W in the form

W =
∞∑

h=0

NhFh(gs) , (3.1)

where Fh(gs) is the amplitude with fixed h

Fh(gs) = (4gs)
h
∞∑

`=0

Wh,`g
2`
s . (3.2)

For later convenience, we included the factor (4gs)
h in λh = (4gsN)h into the definition of

Fh(gs). Usually we do not consider this form of expansion since it is not so illuminating.

However, one advantage of this expansion is that we can study the analytic property of

Fh(gs) as a function of string coupling gs, at least for fixed h. This may give a clue to

understand the gs-dependence of circular Wilson loop.

In order to write W in the form 3.1, we use the second expression in 2.8 and write the

confluent hypergeometric function as a summation

W = e−
gs
2

∞∑

k=0

gks
(N + 1)(N + 2) · · · (N + k)

k!(k + 1)!

= e−
gs
2

∞∑

k=0

gks
(k + 1)!

k∏

j=1

(
1 +

N

j

)
. (3.3)

1To compare with the expression in [1], note that g2
s/6 = (g2

YM)2/96.

– 6 –
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We would like to rewrite this as a power series in N 2. The zero-th order term is easily

found by setting N = 0 in 3.3

F0(gs) = e−
gs
2

∞∑

k=0

gks
(k + 1)!

=
2

gs
sinh

(gs
2

)
. (3.4)

The higher h term has the form

Fh(gs) = e−
gs
2

∞∑

k=0

gks
(k + 1)!

H
(h)
k , (3.5)

where the coefficient H
(h)
k is determined recursively by

H
(0)
k = 1, H

(h)
k =

k∑

n=1

1

n
H

(h−1)
n−1 . (3.6)

In particular, the coefficient in the h = 1 term is the harmonic number: H
(1)
k =

∑k
n=1

1
n .

Remarkably, it turns out that Fh(gs) and Fh+1(gs) are related by the following integral

transformation

Fh+1(gs) =

∫ 1

0
dt 2 sinh

(gs
2

(1− t)
)
Fh(gst) . (3.7)

This is easily shown by expanding both sides in gs and using the relation 3.6. One can also

write this relation 3.7 in the form of convolution

Fh+1(gs) =
1

gs
(B ∗ Fh)(gs) , (3.8)

where ∗ is defined by

(F ∗G)(x) =

∫ x

0
dy F (y)G(x − y) . (3.9)

The function B(gs) appearing in 3.8 is given by

B(gs) = 2 sinh
(gs

2

)
= gsF0(gs) . (3.10)

To summarize, one can increase the number of holes by one by taking a convolution with

B(gs), which is essentially given by the h = 0 term.

As an illustration of the recursion relation, let us consider the behavior of Fh(gs) near

gs = 0. At the leading order in gs, one can use the approximation F0 ∼ 1 and B ∼ gs.

Taking the convolution recursively, one can easily find

Fh(gs) =
ghs

h!(h + 1)!
+O(gh+2

s ) (3.11)

2The N -dependent factor in the first line of 3.3 is known as the rising factorial. This can be expanded

in terms of the Stirling number of the first kind s(n,m)

(N + 1)(N + 2) · · · (N + k) =
kX

m=1

s(k + 1,m+ 1)(−1)k−mNm

However, this expression is not so useful for our purpose, so we will not use this.

– 7 –
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Plugging this into 3.1, we recover the planar result W0(λ) = 2Î1(λ).

Our relation 3.8 is not limited to the perturbative regime in gs. We are able to talk

about the analytic property of Fh(gs). For h = 0, it is clear that F0(gs) given in 3.4 is

analytic on the whole gs-plane. Let us look at the next term h = 1. Setting h = 0 in 3.7

and evaluating the integral, we find

F1(gs) =
1

gs

[
e
gs
2 Ein(gs) + e−

gs
2 Ein(−gs)

]
(3.12)

where Ein(x) denotes the entire exponential integral3

Ein(x) =

∫ x

0

dt

t
(1− e−t) =

∞∑

k=1

(−1)k−1xk

k! k
. (3.13)

Note that F1(gs) is regular at gs = 0. The apparent singularity at gs = 0 due to the

overall factor 1/gs in 3.12 is canceled by the function inside the bracket which behaves

as g2
s near gs = 0. Therefore, F1(gs) vanishes linearly as gs → 0, as expected from the

general form 3.5. Actually F1(gs) is an entire function of gs, since Ein(gs) is entire as the

name suggests. By induction, one can argue that Fh(gs) are analytic for all h, since the

integral 3.7 is always convergent and there is no source of singularity.

At least formally, our relation 3.8 suggests that starting from λ = 0

F0(gs) = W (λ = 0, gs) , (3.14)

we can turn on λ by successively applying the convolution

W (λ, gs) =
∞∑

h=0

(
λ

4gs

)h [ 1

gs

(
gsF0

)
∗
]h
F0(gs) (3.15)

In the next section, we will find a relation between gs = 0 and gs 6= 0.

4. Turning on gs from gs = 0

4.1 Formal Expression of W

To see the relation between gs = 0 and gs 6= 0, let us start with the contour integral

representation of W0(λ) = W (λ, gs = 0)

W0(λ) = 2

∮

z=0

dz

2πi
e

1
2

(λz+ 1
z

) = 2Î1(λ) . (4.1)

The key observation is that the differentiation of W0(λ) by λ is equivalent to the insertion

of z in the contour integral

2
∂

∂λ
↔ z . (4.2)

3The entire exponential integral is related to the ordinary exponential integral by

E1(x) =

Z ∞

x

dt

t
e−t = −γ − log x+ Ein(x) .

– 8 –
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By looking at the contour integral representation of W (λ, gs) in 2.10, one immediately

notices that

W (λ, gs) = exp

[
gsH

(
2gs

∂

∂λ

)]
W0(λ) . (4.3)

This relation can be also obtained from the expansion in terms of pn(gs) 2.18. From 2.14,

Îk(λ) is given by

Îk(λ) =

∮

z=0

dz

2πi
zk−1e

1
2

(λz+ 1
z

) . (4.4)

Again, using the correspondence 4.2, one finds that the derivative with respect to λ increases

the index of Îk(λ) (
2
∂

∂λ

)n
Îk(λ) = Îk+n(λ) . (4.5)

Using this, we can rewrite 2.18 as

W (λ, gs) = 2

∞∑

n=0

(
2gs

∂

∂λ

)n
pn(gs)Î1(λ) , (4.6)

which is equivalent to 4.3 from the definition of pn 2.16.

To summarize, we found a remarkable property of 1/2 BPS circular Wilson loop:

turning on the string coupling from zero coupling amounts to acting a certain differential

operator of λ on the planar result W0(λ).

Although 4.3 is elegant, it is still a formal expression. In particular, the differential

operator appearing in 4.3 involves a derivative ∂nλ with arbitrarily large n. Therefore, it

might be better to interpret it as an integral transform rather than a differential operator.

In the next subsection, we will consider the Chern-Simons theory on S3 as a simple example

to see if this interpretation works.

4.2 Digression to the Chern-Simons Theory on S3

The partition function of SU(N) Chern-Simons theory on S3 is exactly known [12], and

its ’t Hooft expansion was studied in [7]. Via a geometric transition, this is equivalent to

the topological A-model on the resolved conifold. The Kähler parameter of P1 is identified

as the ’t Hooft coupling t = gsN of Chern-Simons theory. The partition function looks like

this:

Zconifold(t, gs) = Zpoint(gs)Zpert(t, gs) , (4.7)

where

Zpoint(gs) =

∞∏

n=1

(1− e−ngs)−n ,

Zpert(t, gs) =

∞∏

n=1

(1− e−t−ngs)n . (4.8)

We are interested in the t-dependent part Zpert(t, gs). The free energy has the following

genus expansion

logZpert(t, gs) =
1

g2
s

F0(t)− t

24
+ F (t, gs) . (4.9)

– 9 –
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The first term is the genus zero term, the second term is a part of the genus one term which

is linear in t, and the last term is a sum of g ≥ 2 terms and a remaining part of g = 1 term

F (t, gs) =

∞∑

g=1

g2g−2
s

B2g

2g(2g − 2)!
Li3−2g(e

−t) . (4.10)

Here Lik(z) denotes the polylogarithm

Lik(z) =

∞∑

n=1

zn

nk
. (4.11)

From this definition, it follows that the function of t appearing in the free energy 4.10

satisfies (
− ∂

∂t

)n
Lik(e

−t) = Lik−n(e−t) . (4.12)

One can immediately notice a similarity of this relation and 4.5 for Îk(λ). From 4.12, we

can rewrite 4.10 as

F (t, gs) =
∞∑

g=1

B2g

2g(2g − 2)!

(
gs
∂

∂t

)2g−2

Li1(e−t) ≡ 12K

(
gs
∂

∂t

)
F inst

1 (t) . (4.13)

Here we introduced a function K(x)

K(x) =

∞∑

g=1

B2g

2g(2g − 2)!
x2g−2 , (4.14)

and a part of the genus one free energy written as a sum of worldsheet instantons

F inst
1 (t) =

1

12
Li1(e−t) = − 1

12
log(1− e−t) . (4.15)

4.13 means that all loop free energy is obtained from the g = 1 term by acting a differential

operator of ’t Hooft coupling.

Again, the differential operator in 4.13 is of infinite order. One might try to define it

by using the Fourier transform of K(x)

K(x) =

∫
dp K̃(p)e−ixp . (4.16)

Then the action of K(gs∂t) in 4.13 is given by a shift of t

F (t, gs) = 12

∫
dp K̃(p)F inst

1 (t− igsp) . (4.17)

Unfortunately, it turns out that K(x) is not Fourier-transformable. However, there exists

an expression like 4.16 with the integration region restricted to the positive real axis 0 ≤
p ≤ ∞. To see this, we use the integral representation of Bernoulli number

∫ ∞

0
dp

2p2g−1

e2πp − 1
= (−1)g−1B2g

2g
. (4.18)
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Plugging this into 4.14, K(x) becomes

K(x) =

∞∑

g=1

∫ ∞

0
dp

2p2g−1

e2πp − 1
(−1)g−1 1

(2g − 2)!
x2g−2

=

∫ ∞

0
dp

2p

e2πp − 1
cos(xp) . (4.19)

Finally, we arrive at an integral form of 4.13

F (t, gs) = 12

∫ ∞

0
dp

p

e2πp − 1

[
F inst

1 (t+ igsp) + F inst
1 (t− igsp)

]
. (4.20)

The failure of the existence of Fourier transform of K(x) is seen by writing 4.19 as

K(x) =

∫ ∞

0
dp

(
p coth(πp) cos(xp)− d

dp
sin(xp)

)
. (4.21)

The second term cannot be dropped since it oscillates at the upper end p = ∞. Let

us ignore this term for the moment. The first term in 4.21 can be extended to the whole

p-axis

K(x) ∼ 1

2

∫ ∞

−∞
dp p coth(πp)e−ixp . (4.22)

If we use this expression in 4.13, we get

F (t, gs) ∼ 6

∫ ∞

−∞
dp p coth(πp)F inst

1 (t− igsp) . (4.23)

By closing the contour of p-integral and picking up the residues at p = in (n = 1, 2, · · ·),
we find

F (t, gs) ∼ −12

∞∑

n=1

nF inst
1 (t+ gsn) =

∞∑

n=1

n log(1 − e−t−ngs) (4.24)

which is exactly the log of Zpert(t, gs) in the infinite product form 4.8.

4.3 Integral Transformation of W0(λ) to W (λ, gs)

Let us return to the circular Wilson loop case. In 4.3, we found that gs = 0 and gs 6= 0 are

related by

W (λ, gs) = G(2gs∂λ, gs)W0(λ) (4.25)

where G(x, gs) = egsH(x). As in the previous subsection, we will try to write it in the form

of Fourier integral

G(x, gs) =

∫
dp G̃(p, gs)e

−ixp . (4.26)

The Chern-Simons example suggests that the region of p-integral does not necessarily

extend to the whole p-axis. Then 4.25 is written as an integral transform

W (λ, gs) =

∫
dp G̃(p, gs)W0(λ− 2igsp) . (4.27)
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Note that the integral kernel G̃(p, gs) has an explicit gs-dependence whereas K̃(p) in the

Chern-Simons case does not.

Unfortunately, we do not know how to compute the kernel G̃(p, gs) in a closed form.

Therefore, in the following we will construct the kernel perturbatively in gs. By expanding

egsH(x) as a power series in gs

egsH(x) =

∞∑

n=0

gns
n!
H(x)n . (4.28)

we will rewrite H(x)n into the form 4.16 term by term. From the explicit calculation

of lower order terms, we conjecture that H(x)n has the following integral representation

depending on the parity of n:

H(x)2k−1 =

∫ ∞

0
dp sin(xp)G2k−1(p) ,

H(x)2k =

∫ ∞

0
dp
(

1− cos(xp)
)
G2k(p) . (4.29)

Then 4.25 is written in a form of integral transform

W (λ, gs)−W0(λ) =

∫ ∞

0
dp
[
G−(p, gs)W−(λ, gsp) +G+(p, gs)W+(λ, gsp)

]
(4.30)

where we defined

W−(λ, gsp) =
W0(λ+ 2igsp)−W0(λ− 2igsp)

2i
,

W+(λ, gsp) = W0(λ)− W0(λ+ 2igsp) +W0(λ− 2igsp)

2
. (4.31)

and

G−(p, gs) =
∞∑

k=1

g2k−1
s

(2k − 1)!
G2k−1(p) ,

G+(p, gs) =
∞∑

k=1

g2k
s

(2k)!
G2k(p) . (4.32)

In appendix C, we computed the integral kernel of H(x)n for first few orders. The result is

G1(p) = Li0(e−πp)

G2(p) =
1

2
pLi0(e−πp) +

Li1(e−πp)
π

G3(p) =
1

4

[(
1− 1

2
p2
)

Li0(e−πp)− 3p
Li1(e−πp)

π
− 6

Li2(e−πp)
π2

]

G4(p) =
1

3!

[(
p− p3

8

)
Li0(e−πp) + 3

(
1− 1

2
p2
)Li1(e−πp)

π

−
(

3 +
11p

2

)Li2(e−πp)
π2

− 16
Li3(e−πp)

π3

]
. (4.33)
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Let us make a few comments on the properties of kernel G±(p, gs). As in the Chern-

Simons case, the kernel has poles on the imaginary p-axis. Although we cannot close the

contour of p-integral, those poles are intimately related to the analytic property of W (λ, gs)

as a function of gs. One can observe that the lower order terms 4.33 contains a piece

Li0(e−πp) =
1

eπp − 1
(4.34)

which has poles at

ppole = 2in n ∈ Z . (4.35)

At this pole, the shifted argument of W0(λ) in 4.31 is given by

λ∓ 2igsppole = λ± 4gsn = 4gs(N ± n) . (4.36)

Namely, the shift of λ at ppole is equivalent to an integer shift of N . This was also the case

for the Chern-Simons theory. We speculate that the existence of the poles at these points

reflects the underlying discreteness of λ/4gs.

5. Discussions

In this paper, we studied the ’t Hooft expansion of 1/2 BPS circular Wilson loop W (λ, gs)

in N = 4 SYM and found its curious properties.

First, we found an operation which increases the number of holes by one. We do not

understand the physical meaning of it. It would be nice to find a physical origin of this

relation.

Second, we found that W (λ, gs) is obtained by acting a differential operator of λ on

W (λ, 0). We also observed a similar relation for the free energy F (t, gs) of Chern-Simons

theory on S3. It might be the case that the similarity of ’t Hooft expansion of circular

Wilson loop and Chern-Simons free energy merely means that 1/2 BPS Wilson loop is

essentially a topological object. Indeed, it is argued in [1] that the whole dependence of

circular Wilson loop on λ and gs is coming from the anomaly of conformal transformation

from straight line to circular loop. We also suspect that this similarity is a consequence of

a general property of matrix model, since both W (λ, gs) [2, 1] and F (t, gs) [17, 18] have

matrix model representation. In both cases, the amplitudes have the structure

A(t, gs) =
∑

n

gns fn(gs)An(t), ∂kt An(t) = An+k(t) . (5.1)

For the Chern-Simons case, fn(gs) = 1+(−1)n

2 χn with constant χn. It is interesting to see

if this structure appears in other cases.

Besides similarity, there are some differences between W (λ, gs) and F (t, gs). The main

source of difference is the ’t Hooft coupling dependence of worldsheet instanton action:

exp(−Sinst) = exp(
√
λ) : string on AdS/N = 4 SYM ,

exp(−Sinst) = exp(−t) : topological string/Chern−Simons theory . (5.2)
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For the AdS case, by Sinst we mean a regularized worldsheet action for the minimal sur-

face [9]. Since the gs 6= 0 result is obtained by acting G(2gs∂λ, gs) or K(gs∂t) to the gs = 0

value, the gs-dependence is closely related to the ’t Hooft coupling dependence of planar

result. In particular, the existence of q-expansion with q = e−gs is related to the linear

dependence of worldsheet instanton action on ’t Hooft coupling. Because of the form of

the instanton action e
√
λ, the circular Wilson loop does not have a q-expansion as we saw

in the text.

A. Contour Integral Representation of W

In this appendix, we will show that the contour integral in 2.9 is equal to the Laguerre

polynomial expression of Wilson loop 2.7. First, we rescale the variable as z → z/2gs.

Then the integral 2.9 becomes

W =
1

gs

∮

z=0

dz

2πi
exp

(
Nz +

gs
2

coth
z

2

)

=
1

gs
e
gs
2

∮

z=0

dz

2πi
exp

(
Nz +

gs
ez − 1

)
. (A.1)

Here we used λ = 4gsN . By the change of variable ez = 1 + w, this is rewritten as

W =
1

gs
e
gs
2

∮

w=0

dw

2πi
(1 + w)N−1e

gs
w

=
1

gs
e
gs
2

∮

w=0

dw

2πi

N−1∑

k=0

(
N − 1

k

)
wk

∞∑

n=0

gns
n!wn

= e
gs
2

N−1∑

k=0

(
N − 1

k

)
gks

(k + 1)!

=
1

N
e
gs
2

N−1∑

k=0

(
N

k + 1

)
gks
k!

. (A.2)

Recalling the definition of Laguerre polynomial

L1
N−1(x) =

N−1∑

k=0

(
N

k + 1

)
(−x)k

k!
, (A.3)

we can see that the last expression of A.2 is equal to the matrix model result 2.7.

B. Some Properties of Buchholz Polynomials

In this appendix, we summarize some useful properties of Buchholz polynomials pn(a),

which are defined by

exp
[
aH(x)

]
=

∞∑

n=0

pn(a)xn , (B.1)
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where H(x) is

H(x) =
1

2

(
coth x− 1

x

)
=
∞∑

n=1

x

x2 + π2n2
. (B.2)

Expanding the last expression around x = 0, we find that the Taylor coefficient bk of H(x)

H(x) =

∞∑

k=1

bkx
2k−1 (B.3)

is given by the Riemann zeta function (or equivalently by the Bernoulli number)

bk = (−1)k−1 ζ(2k)

π2k
=

22k−1B2k

(2k)!
. (B.4)

Let us summarize some properties of pn(a) which follow directly from the definition B.1.

From the obvious relation e(a+b)H = eaHebH , it follows that

pn(a+ b) =

n∑

k=0

pk(a)pn−k(b) . (B.5)

Next, by taking the x-derivative on both sides of B.1 and using B.3, we find a recursion

relation

pn(a) =
a

n

[n+1
2

]∑

k=1

(2k − 1)bkpn+1−2k(a) . (B.6)

This relation states that the nth polynomial pn(a) is determined by the lower order poly-

nomials pk(a) (k < n). Although this relation determines pn(a) recursively, it involves

many terms. A simpler relation between the consecutive neighbors pn(a) and pn−1(a) can

be found as follows. From the definition B.2, H(x) satisfies the relation

1

2

d

dx
H(x) +

1

x
H(x) =

1

4
−H(x)2 . (B.7)

This implies a differential equation for eaH(x)

(
1

2a

∂

∂x
+

1

x

∂

∂a

)
eaH(x) =

(
1

4
− ∂2

∂a2

)
eaH(x) , (B.8)

which is equivalent to the following relation between pn(a) and pn−1(a)

n

2a
pn(a) + p′n(a) =

1

4
pn−1(a)− p′′n−1(a) . (B.9)

One can easily integrate this equation and find the integral form of this relation in the

text 2.19.

The closed form expression of pn(a) is not known in the literature. However, we can

find some coefficients of higher or lower powers of a. The highest power term an of pn(a)

is determined by the first term b1x = x/6 in the expansion of H(x) B.3. Expanding the

exponential eax/6, we find

pn(a) =
an

6nn!
+ (lower order terms) . (B.10)
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Next, let us consider the lower order terms. From the expansion of eaH(x) to the first order

in a

eaH(x) = 1 + a

∞∑

k=1

bkx
2k−1 + · · · , (B.11)

it follows that the odd-order polynomial p2k−1(a) starts with the term bka. We can then fix

the coefficient of a2 in the even-degree polynomial p2k(a) by using the recursion relation B.9.

Setting n = 2k+1 in B.9 and comparing the O(a0) terms on both sides, we find that p2k(a)

starts with the term − 2k+3
4 bk+1a

2. We can repeat this process and find some lower order

terms as

p2k−1(a) = bka+
1

4 · 3!

[
1

2!
(2k + 3)(2k + 4)bk+1 + bk

]
a3 + · · · ,

p2k(a) = −2k + 3

4
bk+1a

2

− 1

3!4!

[
1

23
(2k + 5)(2k + 6)(2k + 7)bk+2 + (2k + 4)bk+1

]
a4 + · · · . (B.12)

There is an alternative, more direct way to fix the coefficients of pn(a). From the

expansion

exp
[
aH(x)

]
=

∞∑

k=0

ak

k!
H(x)k =

∞∑

n=0

xnpn(a) , (B.13)

the coefficients of ak in pn(a) is given by the Taylor coefficient of xn in H(x)k/k!. Therefore,

all we need to know is the Taylor expansion of H(x)k. For example, let us consider H(x)2.

Using the last expression in B.2, H(x)2 is written as

H(x)2 = x2
∞∑

n=1

∞∑

m=1

1

(x2 + π2n2)(x2 + π2m2)

= x2
∞∑

n=1

1

(x2 + π2n2)2
+ x2

∑

n6=m

1

(x2 + π2n2)(x2 + π2m2)

= x2
∞∑

n=1

1

(x2 + π2n2)2
+ x2

∑

n6=m

(
1

x2 + π2n2
− 1

x2 + π2m2

)
1

π2(m2 − n2)

= x2
∞∑

n=1

1

(x2 + π2n2)2
+ x2

∞∑

n=1

1

x2 + π2n2

3

2π2n2
. (B.14)

In the last step, we used the relation

∑

m≥1,m6=n

1

m2 − n2
=

3

4n2
. (B.15)

Finally, expanding the last expression in B.14, we reproduce the coefficient of a2 in p2k(a)

obtained in B.12 by the recursion relation. As one can easily see, this approach becomes

extremely cumbersome as the power of H(x)k increases.
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C. Integral Representation of H(x)k

In this appendix, we will rewrite H(x)k as a Fourier-like integral.

Let us start with the k = 1 case. Using the expansion of H(x) B.3 with coefficient

given in B.4, we find

H(x) =
∞∑

k=1

(−1)k−1
∞∑

n=1

1

(πn)2k
x2k−1

=

∫ ∞

0
dp
∞∑

k=1

(−1)k−1 t2k−1

(2k − 1)!
x2k−1

∞∑

n=1

e−πnp

=

∫ ∞

0
dp sin(xp) Li0(e−πp) . (C.1)

Next consider k = 2. The Taylor coefficient of x2k in H(x)2/2! is the coefficient of a2

in p2k(a) B.12. Therefore, we find

H(x)2 = −1

2

∞∑

k=1

(2k + 3)bk+1x
2k

=
1

2

∞∑

k=1

(−1)k−1(2k + 3)
∞∑

n=1

1

(πn)2k+2
x2k

=

∫ ∞

0
dp

∞∑

k=1

(−1)k−1

[
2k + 1

2

p2k+1

(2k + 1)!

∞∑

n=1

e−πnp +
p2k

(2k)!

∞∑

n=1

1

πn
e−πnp

]
x2k

=

∫ ∞

0
dp
(

1− cos(xp)
) [1

2
pLi0(e−πp) +

1

π
Li1(e−πp)

]
. (C.2)

In the third step, we split 2k + 3 into (2k + 1) + 2 and introduced the p-integral with

different power, p2k+1 or p2k.

The computation of the higher power of H(x) is similar (but tedious). We can find

the Taylor coefficient of H(x)n/n! by looking at the an term in B.12. Using the coefficients

in B.12, we obtain the kernel of H(x)3 and H(x)4 written in the text 4.33.
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